
Final Report
SSDynamics

 May 8, 2025

Carter K. Chas D. Connor A. Charles D. Savannah Chappus

Chris Ortiz
 Senior Technologist, SSD Validation
 Western Digital Corp., Flash Business Unit

John Lee
Senior Director, SSD Validation
Western Digital Corp., Flash Business Unit

SSDynamics... 1
Introduction..3
Process Overview..3

Development Lifecycle...3
Tools.. 4
Team Roles and Responsibilities...4
Organization and procedures.. 5

Version Control.. 5
Issue Tracking..6
Word Processing and Presentation..7
Composition and Review... 8

Requirements.. 8
Review of the Acquisition Process...8
Resulting Requirements...9

Domain-Level Requirements... 9
Functional Requirements... 9
Performance Requirements... 11
Environmental Requirements...12

Architecture and Implementation [Carter]..12
System Overview... 13
Architectural Diagram.. 13
Component Breakdown... 15

interface.py (CLI Entry Point)...15
tester.py... 15
dispatcher.py..15
executor.py...15
logger_config.py...15

Architectural Influences..15
As-Built vs. As-Planned... 16

Testing..16
Project Timeline... 17
Future Work... 18
Conclusion... 19

Glossary [Connor]..19
Appendix A: Development Environment and Toolchain... 19

Introduction

Insuring the reliability of cutting edge NVMe solid state drives is critical for industry
leaders like Western Digital, yet traditional manual validation methods struggle with
comprehensive coverage and adapting to rapid advancements. These limitations,
including potential biases and the difficulty in uncovering obscure edge cases, can slow
development and impact product quality. To address these challenges, our NAU
capstone team, SSDynamics, developed NVMe-Gentest, an automated testing
framework. This proof of concept leverages random model simulation driven by formal
TLA+ specifications to enhance the depth and efficiency of NVMe drive validation.

The core vision behind NVMe-Gentest was to empower Western Digital's validation
engineers by shifting their focus from the tedious, low-level definition of individual test
cases to a higher-level, model-based testing strategy. By automating the generation of
diverse and complex test sequences, NVMe-Gentest aims to not only improve the
likelihood of discovering elusive bugs but also to free up valuable engineering
resources. This allows skilled engineers to concentrate on more complex system
analysis, innovative test strategy development, and the interpretation of results,
ultimately fostering a more agile and thorough validation environment.

This Final Report documents the NVMe-Gentest project, from its conceptualization
through to its current state. Within these pages, we will detail the identified project
requirements, the system architecture and implementation choices made, the testing
methodologies employed, and a reflection on the project timeline and potential avenues
for future work. Our aim is to provide a comprehensive overview of the solution
developed to address Western Digital's validation needs and the outcomes of our efforts
to create a more streamlined and robust testing process.

Process Overview

Development Lifecycle

Our team used an agile approach, organizing and assigning tasks in sprint-like cycles
supported by weekly meetings:

1. Internal meetings
2. Mentor meetings
3. Client meetings

During each sprint, we assign work about a week before an official deadline as a buffer
for delays.

Tools

Version control: Github with a main/test/dev branch

Documentation: Google Suite (Docs, Slides, Drive)

Issue and Task Tracking: Google sheets + GitHub Issues

Deliverables: Markdown for code docs and PDFs for documents

Team Roles and Responsibilities

This project requires that we both handle school capstone assignments and the client
requirements. As such we felt the following roles were useful: Team Leader, Customer
Communicator, Recorder, Architect, Release Manager and Coder. Each member will act
under one of these roles, all members will have a coder role.

● Team Leader: The team member who coordinates task assignments, runs
meetings, and reviews final documents to verify requirements as well as
ensures work is progressing, and makes efforts to resolve conflicts.
○ Chas Diaz

● Customer Communicator: The team member who coordinates and conducts
customer communications.
○ Charles Descamps

● Recorder: This team member maintains detailed meeting minutes.
○ Carter Kaess

● Architect: This team member is primarily responsible for ensuring that core
architectural decisions are followed during implementation.
○ Charles Descamps

● Release Manager: This team member coordinates project versioning and
branching, reviews and cleans up commit logs for accuracy, readability, and
understandability, and ensures that any build tools can quickly generate a
working release.
○ Connor Aiton

● Coder: It is expected that everyone will have a role in producing code. If
possible at this early stage, you might specify *what parts* of the coding
(backend, front-end, node.js, MSP430 programming, etc.) that individuals will
lead on.

■ Code Sections:

● TLA+ to PlusPy
● PlusPy Modification and error traceback
● Python to NVMe CLI
● Logging

○ Everyone

Organization and procedures

Version Control

GitHub (Code/Code Documentation):

ALL capstone related code (including forks of open source projects) will be under the
SSDynamics GitHub organization. The main code base will have 3 main branches:
dev/test/main, other branches for specific and notable features/experiments can be
created as needed (stale branches will be closed). To improve and enforce code quality,
GitHub actions/workflows will be used. Capstone related deliverables will be stored
collaboratively on Google Drive.

● Each member will have a fork of the main code base to work on individually.
○ Keep private forked repositories private
○ Update fork by pulling the main repository before attempting to merge up

to remote
○ Merge requests will not be accepted or reviewed if it fails automated tests

(unless a flaw in automated testing is found)
■ If there is a flaw to fix in automated testing, track on task tracker

with high priority
○ “Pull often, Commit often” for each subtask of a feature and at minimum

submit one pull request back to main for each feature.
■ Unless highly related, do not submit a pull request for multiple

features
● Branching strategy

○ New development is done in dev branch (automated linting may be added)
■ A sub strategy that is commonly used:

1. Someone may create a new branch locally for a feature
being developed,

2. If other member pushes to organization repo first, member
pulls dev branch from organization repo to local repo’s dev
branch

3. Then, member merges dev into feature branch, resolving
merges (thus keeping dev branch history and conflicts more
clean)

https://github.com/SSDynamics-Capstone

○ Complete features should be pushed back to main repo for review and
basic testing

○ Testing branch may be used for unit/integration testing and ensuring that
new features work as intended rigorously

○ If everything is working and passes, Test may be merged into main tagged
as a stable version

■ To further add to trackable stable version, use GitHub releases and
packaging

○ General workflow: local Dev→ PR to remote Dev→Test→ Main
○ Improper use of branches and repos may result in rejected PRs and

administrative repo actions by release manager to maintain order

Google Drive (Deliverables and Capstone Documentation):

● Use for tracking and storing all capstone related deliverables that will be used for
grading

● Drive will have at minimum three folders under a shared root folder: assignments,
meeting agendas and misc.

○ Assignments: Any deliverables that are being turned in
○ Meeting agendas: Team, Mentor and Client meeting goals and schedule
○ Misc: Any other files that facilitate team productivity and collaboration

Issue Tracking

Team Task Tracker (Larger trackable tasks) and GitHub Issues (Smaller programming
subtasks from task tracker)

To track issues that arise or are foreseen in this project, we will be using a mix of two
trackers in this project. For larger more complex tasks or non-coding related tasks, they
will be tracked using the task tracker sheet. The smaller subtasks that may appear from
breaking down tasks from team task tracker, even if small, will be in GitHub Issues.

● Use the organization’s repository for GitHub Issues in all coding and code
documentation issues

○ Issues will remain short and concise. These should be understandable
from a glance.

○ Start broad then go narrow if a longer description is needed, each issue
should contain the following:

■ Issue
■ Replication
■ Suspected cause if any

○ Smaller coding subtasks that may be broken down from the task tracker
will appear here

○ As features or patches are pushed back to organization’s dev branch,
describe fix using a GitHub closing term referencing the issue number

○ For each coding issue, assign at least one member to the issue (most
likely whoever is assigned to the parent task on the task tracker sheet)

○ When there are multiple GitHub Issues for each person, GitHub Project
board should be used

■ Utilize to do, in progress and completed board effectively
■ Prioritize tasks, tasks depended on by other tasks will inherit priority
■ Estimate small/medium/large

○ Bad/Non-descriptive issues will be closed

● For deliverables and capstone documentation, use Google Sheets task tracker
○ Break larger complex tasks into smaller tasks that can be completed by an

individual person
■ Tasks that are larger than what is possible completing in one sitting

should be broken into further subtasks
○ Failure to accurately use use task report may result in inaccurate

contribution and time estimates
■ Responsibility of proper use ultimately falls upon the person doing

the task
○ Each tasks will be descriptive, the type of task needs to be specified and

hours will be estimated
○ If multiple people are working on the same task, mention percentage of

contribution in the comments is required on completion
○ Set a default internal due date due one week before the actual due date

■ With a grace period of ~3 weeks on team initialization, regular
delays on internal due dates will be discussed as a group

○ Remember to update the status of your tasks
○ Should contribution representation conflicts arise, team as a whole will

review the revision and commit history together

Word Processing and Presentation

● Google Docs, Slides and Sheets completion will be a PDF unless otherwise
stated

○ Particularly for simple plaintext documents that require high collaboration

https://docs.github.com/en/enterprise/2.16/user/github/managing-your-work-on-github/closing-issues-using-keywords

● Other forms of word processing like Docs, Overleaf, Sheets and Powerpoint may
be used as more formatting is needed.

● For project related documentation, use markdown.

Composition and Review

● Split up the document into the distinct smaller parts in the task tracker to uphold
responsibility

● On a word processor with no live collaboration, assign one person to handle
compiling and tracking everyone's contributions as one file

● Assign proofreading in task tracker
● On draft ready for final review, use Internal deadline, which will be one week

ahead of actual deadline
○ When the draft is ready, submit to lead editor: Charles Descamps

(tentative)

Requirements

Review of the Acquisition Process

The current SSD validation workflow at Western Digital, while robust, faces several
challenges that initiated the acquisition of this project. These include limitations in test
coverage due to reliance on engineers' understanding, leading to potential biases and
missed edge cases. Manually designing and adapting test sequences for evolving
NVMe requirements is labor-intensive, time-consuming, and imposes a significant
cognitive load on engineers, especially newer ones. These inefficiencies can slow down
the validation process and increase the risk of undiscovered issues in NVMe drives.

To address these deficiencies, this project was conceptualized. The core idea is to
develop a proof of concept that utilizes a random model simulation framework to
generatively create test cases. This approach aims to automate the generation of test
sequences based on a high-level TLA+ specification file, thereby removing the need for
manual, low-level test case definition. The vision is to enhance test coverage, reduce
human bias, improve the detection of edge cases, and increase adaptability to new
requirements by allowing engineers to focus on higher-level design and validation tasks.
This automated system is expected to link a model simulator to an NVMe command
interface, enforcing consistency and improving the overall efficiency and reliability of the
NVMe validation process.

Resulting Requirements

The acquisition process described above led to the definition of the following
requirements for the SSD Validation Proof of Concept:

Domain-Level Requirements

These are high-level requirements that provide an overview of the system's objectives:

1. Comprehensive NVMe SSD Validation: The system must enable thorough
validation of NVMe drives by automating the generation, execution, and logging
of test sequences, covering large state spaces to find edge cases.

2. Random Model Simulation: It will use randomized simulation to explore
potential NVMe behaviors, ensuring robust testing.

3. Traceability: The system must allow tracing back to points of interest, enabling
engineers to investigate and verify repeatability of events like bugs.

4. Efficient Test Execution: It must handle high volumes of test operations
efficiently, providing timely feedback through effective output parsing.

5. Scalability and Versatility: The system needs to be adaptable to support a wide
range of NVMe opcodes (admin and IO passthrough) and accommodate new
NVMe features or specification changes without major architectural overhauls.

6. Drive Integrity and Consistency: It must verify the consistency and
predictability of Read/Write operations to ensure NVMe drives maintain integrity.

7. Usability and Accessibility: Designed for validation engineers, it will feature an
intuitive terminal interface, understandable by new junior engineers.

8. Compliance and Standardization: The system must strictly adhere to NVMe
specifications and industry best practices.

Functional Requirements

These requirements detail the specific functions and features of the project:

1. Validation Framework Features:

○ Test Case Generation: The system will generatively create random test
sequences from a design-level model-simulation file (TLA+) that adheres
to NVMe standards. This file will be model-checked for design flaws and
will define high-level rules for state combinations mapping to real-world
functions. Interpretation of this file will output states and transitions,
mapping model states to validation functions to cover edge cases in large
state spaces. Random seeds will determine test sequence generation.

○ Command Execution: The system will execute all commands available in
nvme-cli via admin and IO pass-through commands. It will support all
admin opcodes (e.g., Get Features, Set Features, Identify) and IO
opcodes (e.g., Write, Read, Flush). A consistent interface for pass-through
functionalities will be maintained. A watchdog timer will handle hanging
processes. The system will explore new paths upon reaching the end of a
state space or generate a new state space if none are available.

○ Result Evaluation: It will provide comprehensive output from command
execution within a test sequence. Results from NVMe CLI will be parsed
and evaluated to identify anomalies. Command output will indicate
success/failure (stderr), return data (stdout), and exit codes for verification.

2. Simulation Capabilities:

○ Randomized Generation: The system will use randomly created and
stored seeds to generate test sequences based on constraints from the
model simulation file, aiming to avoid human bias. New seeds will be
generated when a state space is fully explored.

○ State Exploration: Exploration will follow a depth-first search pattern to
quickly find unique states. Deviations from expected states can identify
anomalies.

○ Resampling Capabilities: Traceability and resampling will be
implemented by storing and utilizing seeds to recreate previously explored
issues or bugs, though identical path execution is not guaranteed.

○ Bridge between Model Simulation and Real-World: The system will be
driven by state space model simulation. It will intercept model simulation
outputs and make blocking calls to another interface that maps these
outputs to callable functions and arguments; the model simulation will
pause until the call returns.

3. Data Handling and Reporting:

○ Data Integrity Checks: Test execution data will be analyzed to ensure
functionalities manipulate and read data as expected during feature
development.

○ Reporting and Logging: The CLI will output hex dumps following NVMe
specifications, with functions to translate these to human-readable data for
critical errors/functionalities. Results must be traceable for error
recreation. Logging should be efficient and not significantly impact
performance. Engineers might need to understand raw hex dumps for
untranslated outputs.

4. Accessibility and Maintainability:

○ Modular Design: The program will feature a modular, layered design with
four main modules: TLA interpreter, NVMe interface, logging, and a
bridging model connecting them. This decoupled design allows for code
changes as long as interfaces remain consistent or consuming functions
adapt.

○ User Interface: It will present a user interface similar to IEEE Linux utility
conventions (IEEE Std 1003.1-2017). A customizable logger (via config
file) and a user guide (prompted or on error) will be included. The interface
will cater to both new and experienced engineers, abstracting inner
workings while providing control through options and argument passing.

○ Documentation: Hierarchical documentation will be provided, from
surface-level functions to deeper implementations, using diagrams for
high-level concepts. Automated documentation will be used for lower-level
program aspects for consistency. Source code will have specific
comments, and commonly used functions will have docstrings. Each file's
purpose will be described.

○ Tech Debt and Limitations: The proof of concept will be simplified to
meet deadlines and may not fully align with all validation team needs. It
allows anomaly replication but doesn't guarantee deterministic execution
paths. Reliance on external tools may require maintenance. Features like
AI simulation tuning, state-space visualization, automated output analysis,
and Jira API integrations are outside the project's scope.

Performance Requirements

These are testable requirements for system performance:

1. Execution Speed:
○ Validate 10,000+ simple admin test sequence executions within 24 hours.
○ Ability to parse NVMe logs and generate summaries in under 'x' seconds

per log (specific 'x' TBD).
○ Logging from execution should not cause significant overhead (less than

500 milliseconds).
○ The system will loop indefinitely until the end of an execution path is

found.
2. System Responsiveness:

○ User interactions should have a response time of less than 3 seconds;
longer functions must indicate progress.

○ If any opcode's blocking interval exceeds 60 seconds, the system shall
automatically proceed to the next opcode.

○ A log will be returned within 10 seconds after an error.
3. Accuracy:

○ The program will detect and flag anomalies with nearly complete accuracy,
verified through resampling.

4. Resource Efficiency:
○ Optimize CPU and memory usage for smooth operation under heavy test

loads.

Environmental Requirements

These specify the software and technology context for the project:

1. Hardware Constraints:
○ Compatible with Linux-based systems (kernel 6.8 or later).
○ Support for NVMe SSDs (NVMe 1.4 or later).
○ Requires a secondary target NVMe SSD.
○ RAM and CPU capable of virtualization and high throughput/IO

operations.
○ Motherboard with current NVMe compatibility.
○ Internet/internal network accessibility for the server.
○ Testing server located with consistent power and internet.

2. Software Dependencies:
○ Must run Ubuntu Server 24.04 LTS distribution.
○ Integrate with NVMe CLI and Python-based tooling.
○ KVM+libvirt support required for sandboxing and portability.
○ PlusPy needed to interpret TLA files.
○ Latest nvme-cli installed.
○ Developed under Python 3.12.

3. Standards Compliance:
○ Ensure compliance with NVMe command specifications and testing

protocols.
○ Modifying source code and implementing model-simulation files requires a

deep understanding of industry-standard specifications.

Architecture and Implementation [Carter]

System Overview

NVMe-Gentest is designed as a modular testing framework for NVMe SSD devices,
driven by formal specifications written in TLA+. At its core, the system uses a layered
architecture with clean separation of responsibilities across modules that parse formal
specs, generate test scenarios, execute commands via the NVMe CLI, and capture logs
for analysis.

The architecture supports both automated and manual test workflows and was
influenced by layered and pipeline architectural styles, where data flows in a clear,
top-down path and each layer transforms or acts upon the input from the previous one.

Architectural Diagram

The system is composed of the following high-level components, connected in a logical
flow:

1. TLA+ Specification File
Provided by the tester, this defines the expected behavior of the NVMe device
under test, including allowed commands and state transitions.

2. PlusPy + Parser Module
○ Responsibility: Loads and interprets the TLA+ file.
○ Example: Reads a specification that allows a sequence like write →

read → flush.
Uses the PlusPy library to simulate the state machine and emits valid
state transition outputs for the test runner.

3. Test Runner (NVMeTester)
Responsibility: Central controller that manages the test lifecycle.

○ Key Tasks:
■ Loads TLA+ constants and initializes the interpreter
■ Generates or uses a provided seed
■ Loops through state transitions
■ Resamples seed if a bug is detected

○ Communication: Calls the dispatcher with parsed output at each step.

4. Dispatcher
○ Responsibility: Translates PlusPy output into CLI-ready arguments.
○ Example: Extracts "cdw10 |-> 5" and converts it to --cdw10 5.

5. Executor

○ Responsibility: Builds and executes the final NVMe CLI command using
Python’s subprocess.

○ Features:
■ Handles namespace path formatting (e.g., /dev/nvme0n1)
■ Supports both admin-passthru and io-passthru

6. Logger System

○ Responsibility: Tracks all events in a rolling log file.
○ Features:

■ Timestamped entries
■ Error summary section
■ Seed, command, and stderr trace capture

■ Custom error handler used by the test runner

Component Breakdown

interface.py (CLI Entry Point)

● Parses command-line arguments
Passes runtime configuration (e.g., seed, count, CLI device) to NVMeTester

tester.py

● Manages full test execution logic
● Interfaces directly with PlusPy, dispatcher, and error handling
● Contains logic for seed resampling and bug detection
● Calls clear_logs() and sets up the error summary mechanism

dispatcher.py

● Parses raw PlusPy state output
● Translates TLA+ dictionary output into structured argument dictionaries

executor.py

● Executes real commands using nvme-cli
● Captures stdout, stderr, and exit codes
● Logs both human-readable and machine-parseable results

logger_config.py

● Manages logging setup and teardown
● Implements custom rolling file handler and error collector
● Writes a summary of all error-level messages at test end

Architectural Influences

The system primarily follows a layered architecture, where:

● Each layer has a single responsibility

● Control flows downward (from spec to output)
Each module passes structured data to the next

It also reflects a pipeline style in the way state → command → result is processed
sequentially.

As-Built vs. As-Planned

During early planning, we envisioned a three-phase model:

1. Parse TLA+
2. Generate CLI tests
3. Analyze results

While this model largely held, there were several key deviations:

● Deferred Features:
 The logging verbosity flag (--logging-level) was partially implemented but
excluded from the final release due to time constraints and lack of test coverage.

● Enhanced Features:
 Rolling log management and detailed error summaries were not in the original
plan but became critical during early test cycles and were added accordingly.

● Architecture Adjustments:
 Originally, the PlusPy integration and the parser were to be separate
components. In practice, they were combined to simplify state tracking and
reduce parsing complexity.

● Testing Strategy Evolution:
 Early versions used fixed test cases. Through iteration, the system evolved to
support both fixed and generative (resampled) test seeds, which significantly
improved bug reproduction and coverage.

Testing

Testing the generative testing platform took some work, because it’s generative, it
requires some more manual validation to make sure that the platform works. We wrote a

lot of unit tests, as this is where most of the work happens, within our modules. Each
module needed to work as best as possible at its one job. We decided to use PyTest for
our unit testing to keep it simple and within the standard library so that it would make
installation easier.

Unit tests tested all of the modules that we wrote for the project. We decided that
modularity was important for the project, and wrote the platform to be as modular as
possible. This made it easier to do unit testing, as we would treat each module as their
own set of test cases.

Integration testing was pretty much checking that the modules communicated with each
other. In most circumstances, we tested the integrations by running the platform in its
entirety. This is because each module was used within our project, and that they were
coupled in a way that allows for the integrations tested.

Usability testing was performed similarly to integration testing, as we took a stance of
how the test engineers would be using the platform. Using the platform includes
providing an NVMe device path and a TLA+ specification. The real utility here is in
making sure that the TLA+ is parsed correctly, which our modified PlusPy library is
taking over. Finalizing usability testing will be done through giving the platform to
engineers to work with and getting feedback. Since our product is mainly used by test
engineers, we really wanted to keep the options simple and straightforward, which is
why the product has ‘in-line’ help. This is intended for the engineers so they don’t have
to consult a manual, they can instead focus on writing TLA+ testing specifications.

Overall, testing the NVMe-Gentest platform showed a few problems, mainly through
demonstration/usability testing. The NVMe-Gentest platform, being a command line
interface only, means that all the problems will show through really easily. This is
because errors or other verbose language is seen within the program and the logs for it.
We had to make very little changes because of testing through unit or integration tests,
which is great for the modularity of the program.

Project Timeline

Establishing a timeline for the project, knowing what we know now, we can see the very
obvious path to take. However, when we were initially planning out the project, we had
to make sure that we focused on the big parts of the project. We had scheduled things
so that we could focus on making modifications to PlusPy, and jump right into the
project. Below are the tasks that we focused on in the project:

● Opcode Validation
● TLA+ Parsing (Modifications to the PlusPy library included here)
● PlusPy Command Blocking (More modifications to PlusPy)

● NVMe-CLI Admin Passthrough
● TLA+↔PlusPy (Communication between TLA+ model and PlusPy parser)
● Logging (Decided to use a rolling logging method)
● Seeding and Resampling
● TLA+↔PlusPy↔NVMe-CLI (Communication between all major parts of the

project)

These tasks were decided on in the first semester, and when we came back from break,
our tasks were more specific. This helped us keep on track for the project, and focus
more on the implementation rather than high level requirements. These are the
milestones that we focused on within this last semester:

● Interface Python File
● Logging Configuration
● NVMe Python File
● TLA Parser
● PlusPy Modifications
● Testing

Notice that there are a lot less tasks, this is due to the fact that we had focused a lot
more on the functionality here, and less on the high level requirements, since we had a
much better understanding of the project by the end of the first semester. Overall, the
timeline for our project was linear, and we immediately started on the next part of the
project instead of taking a break. During the first semester, the team was very much
trying to figure out what we would specialize in during programming. Since we didn’t
understand the project well at that point, it was hard to assign tasks to the team. During
the second semester, after we figured out what the project was all about and what tasks
everyone was comfortable with completing, we found more specialized roles for
everyone to complete. Right now, we are focused on making our last finishing touches
on the project before delivery to the client.

Future Work

Further work on the NVMe-Gentest platform was mainly decided by the team and
discussed with the client. We found three main improvements.

First, is threading. Threading would allow for multiple tests to be run concurrently, thus
allowing testing to be done on multiple simulations, and allow for communication
between them. This would essentially allow for a LOT of testing to happen at once,
‘brute-force’ style, and could allow one to catch a lot of cases that developers might not
catch.

Second, is external communication. Our product is quite closed, and extending it,
means that it must be done at the Python level. The best thing to do would be to allow
for communication between the TLA+ model and the scripts. This is sort of implemented
as it is, but doesn’t fully work. Further work would have to be done to make it completely
operational.

Third, is improved simulator communication. Our current implementation has a very
basic way to communicate between the PlusPy library and the TLA+ model. This means
that we know that the TLA+ model can be parsed, and we’ve made enough
modifications to it to allow for most of the basic use cases, however, additional
functionality might require future work to allow for more thorough communication.

If we were to pass this product off to another group to have them improve it, they would
certainly have to walk through the entire code before even attempting to improve upon it
with these discussed features.

Conclusion

The NVMe-Gentest platform was created with the intention of adding another tool to the
testing toolbox of validation testing engineers for NVMe SSDs. The project was meant
to allow for a ‘brute-force’ method of testing, testing the boundaries of logic. While
targeted testing is great for catching about 90% of the logical bugs, the last 10% are
difficult to impossible to find when the human is involved. Our platform attempts to
improve this by finding all possible states and paths a drive could possibly take and
figure out if there is a specific path in which it will crash, and the steps it took to create
that problem so that it could be fixed. This new method of testing will help test engineers
find new bugs that could have never been found through traditional testing.

As a team, we created a testing platform that should improve the current methods of
testing that are in use right now. We certainly struggled with the new concepts that we
had to learn in order to finish the project, like TLA+. Our team strived to get our project
as close as possible to what our client wanted, and we feel like we came up with the
best solution we could with our time. The Capstone class and all of its documentation
helped us create a better project for our client, and without all of their help, this
generative testing platform would likely not exist.

Glossary
Appendix A: Development Environment and Toolchain

This section will provide a quick overview of how to get set up with our project and start
contributing.

Prerequisites: Linux (Ubuntu LTS or any modern linux distro with nvme-cli and Python 3.12+
installed)

Hardware: When setting up this project, we recommend having a separate NVMe drive to run
validate that is not the main drive (with OS stored). The project does not use that much compute
power but will benefit from higher clock speed. More storage in the main drive will also allow for
more logging to be stored.

Toolchain:
Version control: Git/GitHub

● We use Git/GitHub due to it already being installed on linux and its ease of use. There
are 3 branches:

○ Main: The final code/release
○ Test: Code that is ready for testing
○ Dev: All other code/development code

● To automate some of the testing, we have included some github Actions scripts
○ Normally github branch rules and some deployment scripts would be working

here but because the repo is private, GitHub does not allow this under free use.
IDE: Visual Studio Code + TLA+ Toolbox (optional)

● You can use any coding environment that supports python but we recommend visual
studio code because of the plugins that it supports that makes development much easier

○ Any extensions that you would use for Python
○ TLA+ extension by TLA+ foundation (allows for simulation of TLA+ files without

the TLA+ toolkit within the editor)
○ SSH, if you are using a separate machine to run the validations on, the SSH

extension written by microsoft makes the workflow of developing and operation
easier

Setup:
1. Install or virtualize linux on a system with a spare NVMe drive

a. If you are virtualizing linux you need to make sure that the NVMe is passthru from
host to virtual machine. You also will need to ensure that virtualization is enabled
on the CPU in BIOS

2. Install IDE with Python and TLA+ plugins
3. Read the main README for directions on how to start the project

Production cycle:
Luckfully because all of the code is mostly interpreted, and the code uses all builtin libraries,
there is not much to do for the production cycle. There is no build or compile to do. When
developing, you'll want to make your own fork and develop in the “dev” branch, then our team
usually follows the following process:

1. Save small changes to dev
2. When code is ready, run “flake8 .” to ensure that there are no formatting issues, our

configuration for flake8 is stored in the setup.cfg file
3. Push into your fork
4. Pull fork into main/collaborative repository, resolving conflicts.

5. Merge dev branch with test on major feature completions and run any unit/integration
testing

6. Final product should be merged into the main branch on the collaborative repository

	Final Report
	SSDynamics
	

	Introduction
	Process Overview
	Development Lifecycle
	Tools
	Team Roles and Responsibilities
	Organization and procedures
	Version Control
	Issue Tracking
	Word Processing and Presentation
	Composition and Review

	Requirements
	Review of the Acquisition Process
	Resulting Requirements
	Domain-Level Requirements
	Functional Requirements
	Performance Requirements
	Environmental Requirements

	Architecture and Implementation [Carter]
	System Overview
	Architectural Diagram
	Component Breakdown
	interface.py (CLI Entry Point)
	tester.py
	dispatcher.py
	executor.py
	logger_config.py

	Architectural Influences
	As-Built vs. As-Planned
	Testing
	Project Timeline
	Future Work
	Conclusion

	Glossary
	Appendix A: Development Environment and Toolchain

